1,817 research outputs found

    Period adding bifurcations in dynamic pricing processes

    Full text link
    Price information enables consumers to anticipate a price and to make purchasing decisions based on their price expectations, which are critical for agents with pricing decisions or price regulations. A company with pricing decisions can aim to optimise the short-term or the long-term revenue, each of which leads to different pricing strategies thereby different price expectations. The choices between the two optimisation objectives consider the maximal revenue and the robustness of a chosen pricing strategy against market volatility. However the robustness is rarely identified in a volatile market. Here,we investigate the robustness of optimal pricing strategies with the short-term or long-term optimisation objectives through the analysis of nonlinear dynamics of price expectations. Bifurcation diagrams and period diagrams are introduced to compare their change in dynamics. Our results highlight that period adding bifurcations occur during the dynamic pricing processes studied. These bifurcations would challenge the robustness of an optimal pricing strategy. The consideration of the long-term revenue allows a company to charge a higher price, which in turn increases the revenue. However, the consideration of the short term revenue can avoid period adding bifurcations, contributing to a robust pricing strategy. This allows a company to harvest a good revenue through a robust pricing strategy in a volatile market and to satisfy regulations of a control in price volatility

    Co-registration of Laser Altimeter Tracks with Digital Terrain Models and Applications in Planetary Science

    Get PDF
    We have derived algorithms and techniques to precisely co-register laser altimeter profiles with gridded Digital Terrain Models (DTMs), typically derived from stereo images. The algorithm consists of an initial grid search followed by a least-squares matching and yields the translation parameters at sub-pixel level needed to align the DTM and the laser profiles in 3D space. This software tool was primarily developed and tested for co-registration of laser profiles from the Lunar Orbiter Laser Altimeter (LOLA) with DTMs derived from the Lunar Reconnaissance Orbiter (LRO) Narrow Angle Camera (NAC) stereo images. Data sets can be co-registered with positional accuracy between 0.13 m and several meters depending on the pixel resolution and amount of laser shots, where rough surfaces typically result in more accurate co-registrations. Residual heights of the data sets are as small as 0.18 m. The software can be used to identify instrument misalignment, orbit errors, pointing jitter, or problems associated with reference frames being used. Also, assessments of DTM effective resolutions can be obtained. From the correct position between the two data sets, comparisons of surface morphology and roughness can be made at laser footprint- or DTM pixel-level. The precise co-registration allows us to carry out joint analysis of the data sets and ultimately to derive merged high-quality data products. Examples of matching other planetary data sets, like LOLA with LRO Wide Angle Camera (WAC) DTMs or Mars Orbiter Laser Altimeter (MOLA) with stereo models from the High Resolution Stereo Camera (HRSC) as well as Mercury Laser Altimeter (MLA) with Mercury Dual Imaging System (MDIS) are shown to demonstrate the broad science applications of the software tool

    Ubiquitination and proteasomal degradation of ATG12 regulates its proapoptotic activity

    Get PDF
    During macroautophagy, conjugation of ATG12 to ATG5 is essential for LC3 lipidation and autophagosome formation. Additionally, ATG12 has ATG5-independent functions in diverse processes including mitochondrial fusion and mitochondrial-dependent apoptosis. In this study, we investigated the regulation of free ATG12. In stark contrast to the stable ATG12–ATG5 conjugate, we find that free ATG12 is highly unstable and rapidly degraded in a proteasome-dependent manner. Surprisingly, ATG12, itself a ubiquitin-like protein, is directly ubiquitinated and this promotes its proteasomal degradation. As a functional consequence of its turnover, accumulation of free ATG12 contributes to proteasome inhibitor-mediated apoptosis, a finding that may be clinically important given the use of proteasome inhibitors as anticancer agents. Collectively, our results reveal a novel interconnection between autophagy, proteasome activity, and cell death mediated by the ubiquitin-like properties of ATG12

    RIPK3 restricts viral pathogenesis via cell death-independent neuroinflammation

    Get PDF
    Receptor-interacting protein kinase-3 (RIPK3) is an activator of necroptotic cell death, but recent work has implicated additional roles for RIPK3 in inflammatory signaling independent of cell death. However, while necroptosis has been shown to contribute to antiviral immunity, death-independent roles for RIPK3 in host defense have not been demonstrated. Using a mouse model of West Nile virus (WNV) encephalitis, we show that RIPK3 restricts WNV pathogenesis independently of cell death. Ripk3(-/-) mice exhibited enhanced mortality compared to wild-type (WT) controls, while mice lacking the necroptotic effector MLKL, or both MLKL and caspase-8, were unaffected. The enhanced susceptibility of Ripk3(-/-) mice arose from suppressed neuronal chemokine expression and decreased central nervous system (CNS) recruitment of T lymphocytes and inflammatory myeloid cells, while peripheral immunity remained intact. These data identify pleiotropic functions for RIPK3 in the restriction of viral pathogenesis and implicate RIPK3 as a key coordinator of immune responses within the CNS

    Widespread mitochondrial depletion via mitophagy does not compromise necroptosis

    Get PDF
    Programmed necrosis (or necroptosis) is a form of cell death triggered by the activation of receptor interacting protein kinase-3 (RIPK3). Several reports have implicated mitochondria and mitochondrial reactive oxygen species (ROS) generation as effectors of RIPK3-dependent cell death. Here, we directly test this idea by employing a method for the specific removal of mitochondria via mitophagy. Mitochondria-deficient cells were resistant to the mitochondrial pathway of apoptosis, but efficiently died via tumor necrosis factor (TNF)-induced, RIPK3-dependent programmed necrosis or as a result of direct oligomerization of RIPK3. Although the ROS scavenger butylated hydroxyanisole (BHA) delayed TNF-induced necroptosis, it had no effect on necroptosis induced by RIPK3 oligomerization. Furthermore, although TNF-induced ROS production was dependent on mitochondria, the inhibition of TNF-induced necroptosis by BHA was observed in mitochondria-depleted cells. Our data indicate that mitochondrial ROS production accompanies, but does not cause, RIPK3-dependent necroptotic cell death

    Illumination Conditions at the Lunar Poles: Implications for Future Exploration

    Get PDF
    We produced 400 x 400 km Digital Terrain Models (DTMs) of the lunar poles from Lunar Orbiter Laser Altimeter (LOLA) ranging measurements. To achieve consistent, high-resolution DTMs of 20 m/pixel the individual ranging profiles were adjusted to remove small track-to-track o sets. We used these LOLADTMs to simulate illumination conditions at surface level for 50 x 50 km regions centered on the poles. Illumination was derived in one-hour increments from 01 January, 2017 to 01 January, 2037 to cover the lunar precessional cycle of 18.6 years and to determine illumination conditions over several future mission cycles. We identified three regions receiving high levels of illumination at each pole, e.g. the equator-facing crater rims of Hinshelwood, Peary and Whipple for the north pole and the rim of Shackleton crater, and two locations on a ridge between Shackleton and de Gerlache crater for the south pole. Their average illumination levels range from 69.5% to 82.9%, with the highest illumination levels found at the north pole on the rim of Whipple crater. A more detailed study was carried out for these sites as targets for a lander and/or rover equipped with solar arrays. For this purpose we assumed a lander with a structural height of two meters above the ground (height of the solar panels). Here average illumination levels range from 77.1% to 88.0%, with the maximum found at the ridge between Shackleton and de Gerlache crater on the south pole. Distances, sizes and slopes of nearby Permanently Shadowed Regions (PSRs) as a prime science target were also assessed in this case

    Numerical Simulation of Illumination and Thermal Conditions at the Lunar Poles Using LOLA DTMs

    Get PDF
    We are interested in illumination conditions and the temperature distribution within the upper two meters of regolith near the lunar poles. Here, areas exist receiving almost constant illumination near areas in permanent shadow, which were identified as potential exploration sites for future missions. For our study a numerical simulation of the illumination and thermal environment for lunar near-polar regions is needed. Our study is based on high-resolution, twenty meters per pixel and 400 x 400 km large polar Digital Terrain Models (DTMs), which were derived from Lunar Orbiter Laser Altimeter (LOLA) data. Illumination conditions were simulated by synthetically illuminating the LOLA DTMs using the horizon method considering the Sun as an extended source. We model polar illumination for the central 50 x 50 km subset and use it as an input at each time-step (2 h) to evaluate the heating of the lunar surface and subsequent conduction in the sub-surface. At surface level we balance the incoming insolation with the subsurface conduction and radiation into space, whereas in the sub-surface we consider conduction with an additional constant radiogenic heat source at the bottom of our two-meter layer. Density is modeled as depth-dependent, the specific heat parameter as temperature-dependent and the thermal conductivity as depth- and temperature-dependent. We implemented a fully implicit finite-volume method in space and backward Euler scheme in time to solve the one-dimensional heat equation at each pixel in our 50 x 50 km DTM. Due to the non-linear dependencies of the parameters mentioned above, Newton's method is employed as the non-linear solver together with the Gauss-Seidel method as the iterative linear solver in each Newton iteration. The software is written in OpenCL and runs in parallel on the GPU cores, which allows for fast computation of large areas and long time scales

    Detection of the 13CO(J=6-5) Transition in the Starburst Galaxy NGC 253

    Full text link
    We report the detection of 13CO(J=6-5) emission from the nucleus of the starburst galaxy NGC 253 with the redshift (z) and Early Universe Spectrometer (ZEUS), a new submillimeter grating spectrometer. This is the first extragalactic detection of the 13CO(J=6-5) transition, which traces warm, dense molecular gas. We employ a multi-line LVG analysis and find ~ 35% - 60% of the molecular ISM is both warm (T ~ 110 K) and dense (n(H2) ~ 10^4 cm^-3). We analyze the potential heat sources, and conclude that UV and X-ray photons are unlikely to be energetically important. Instead, the molecular gas is most likely heated by an elevated density of cosmic rays or by the decay of supersonic turbulence through shocks. If the cosmic rays and turbulence are created by stellar feedback within the starburst, then our analysis suggests the starburst may be self-limiting.Comment: 4 pages, 2 figures, accepted by ApJ Letter

    African Studies Abstracts Online: number 58, 2017

    Get PDF
    ASA Online provides a quarterly overview of journal articles and edited works on Africa in the field of the social sciences and the humanities available in the ASC library. Issue 58 (2017). African Studies Centre Leiden.ASC – Publicaties niet-programma gebonde
    • …
    corecore